Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.350
Filtrar
1.
Methods Mol Biol ; 2787: 281-291, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38656497

RESUMO

This chapter provides a description of the procedure for two-dimensional electrophoresis that can be performed for any given gel size and isoelectric focusing range. This will enable the operator to recognize critical steps and gain sufficient information to generate 2D images suitable for computer-assisted analysis of 2D-gel, as well as mass spectrometry analysis for protein identification and characterization.


Assuntos
Eletroforese em Gel Bidimensional , Focalização Isoelétrica , Proteínas de Plantas , Eletroforese em Gel Bidimensional/métodos , Proteínas de Plantas/isolamento & purificação , Proteínas de Plantas/análise , Focalização Isoelétrica/métodos , Proteômica/métodos , Plantas/química , Espectrometria de Massas/métodos
2.
Methods Mol Biol ; 2791: 113-119, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38532098

RESUMO

Two-dimensional gel electrophoresis (2-DE) is a proteomic tool used for the separation of protein mixtures according to protein isoelectric point and molecular mass. Although gel-free quantitative and qualitative proteomic study techniques are now available, 2-DE remains a useful analytical tool. The presented protocol was performed to analyze the flower and leaf proteome of common buckwheat using 24 cm immobilized pH gradient strips (pH 4-7) and visualization of proteins on gels via colloidal Coomassie G-250 staining.


Assuntos
Fagopyrum , Proteoma , Proteoma/análise , Proteômica , Focalização Isoelétrica/métodos , Folhas de Planta/química , Flores , Eletroforese em Gel Bidimensional/métodos , Géis , Concentração de Íons de Hidrogênio
3.
Eur J Pharm Biopharm ; 198: 114248, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38467335

RESUMO

Fc Fusion protein represents a versatile molecular platform with considerable potential as protein therapeutics of which the charge heterogeneity should be well characterized according to regulatory guidelines. Angiotensin-converting enzyme 2 Fc fusion protein (ACE2Fc) has been investigated as a potential neutralizing agent to various coronaviruses, including the lingering SARS-CoV-2, as this coronavirus must bind to ACE2 to allow for its entry into host cells. ACE2Fc, an investigational new drug developed by Henlius (Shanghai China), has passed the Phase I clinical trial, but its huge amount of charge isoforms and complicated charge heterogeneity posed a challenge to charge variant investigation in pharmaceutical development. We employed offline free-flow isoelectric focusing (FF-IEF) fractionation, followed by detailed characterization of enriched ACE2Fc fractions, to unveil the structural origins of charge heterogeneity in ACE2Fc expressed by recombinant CHO cells. We adopted a well-tuned 3-component separation medium for ACE2Fc fractionation, the highest allowable voltage to maximize the FF-IEF separation window and a mild Protein A elution method for preservation of protein structural integrity. Through peptide mapping and other characterizations, we revealed that the intricate profiles of ACE2Fc charge heterogeneity are mainly caused by highly sialylated multi-antenna N-glycosylation. In addition, based on fraction characterization and in silico glycoprotein model analysis, we discovered that the large acidic glycans at N36, N73, and N305 of ACE2Fc were able to decrease the binding activity towards Spike (S) protein of SARS-CoV-2. Our study exemplifies the value of FF-IEF in highly complex fusion protein characterization and revealed a quantitative sialylation-activity relationship in ACE2Fc.


Assuntos
Glicoproteínas , Animais , Cricetinae , Cricetulus , China , Proteínas Recombinantes , Focalização Isoelétrica/métodos , Ligação Proteica
4.
MAbs ; 16(1): 2313737, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38332713

RESUMO

Therapeutic mAbs show a specific "charge fingerprint" that may affect safety and efficacy, and, as such, it is often identified as a critical quality attribute (CQA). Capillary iso-electric focusing (cIEF), commonly used for the evaluation of such CQA, provides an analytical tool to investigate mAb purity and identity across the product lifecycle. Here, we discuss the results of an analysis of a panel of antibody products by conventional and whole-column imaging cIEF systems performed as part of European Pharmacopoeia activities related to development of "horizontal standards" for the quality control of monoclonal antibodies (mAbs). The study aimed at designing and verifying an independent and transversal cIEF procedure for the reliable analysis of mAbs charge variants. Despite the use of comparable experimental conditions, discrepancies in the charge profile and measured isoelectric points emerged between the two cIEF systems. These data suggest that the results are method-dependent rather than absolute, an aspect known to experts in the field and pharmaceutical industry, but not suitably documented in the literature. Critical implications from analytical and regulatory perspectives, are herein thoughtfully discussed, with a special focus on the context of market surveillance and identification of falsified medicines.


Assuntos
Anticorpos Monoclonais , Eletroforese Capilar , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais/análise , Focalização Isoelétrica/métodos , Eletroforese Capilar/métodos , Ponto Isoelétrico , Controle de Qualidade
5.
Blood Cells Mol Dis ; 104: 102758, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37246072

RESUMO

The genetic regulation of hemoglobin is complex and there are a number of genetic abnormalities that result in clinically important hemoglobin disorders. Here, we review the molecular pathophysiology of hemoglobin disorders and review both old and new methods of diagnosing these disorders. Timely diagnosis of hemoglobinopathies in infants is essential to coordinate optimal life-saving interventions, and accurate identification of carriers of deleterious mutations allows for genetic counseling and informed family planning. The initial laboratory workup of inherited disorders of hemoglobin should include a complete blood count (CBC) and peripheral blood smear, followed by carefully selected tests based on clinical suspicion and available methodology. We discuss the utility and limitations of the various methodologies to fractionate hemoglobin, including cellulose acetate and citrate agar hemoglobin electrophoresis, isoelectric focusing, high-resolution high-performance liquid chromatography, and capillary zone electrophoresis. Recognizing that most of the global burden of hemoglobin disorders exists in low- and middle-income countries, we review the increasingly available array of point-of-care-tests (POCT), which have an increasingly important role in expanding early diagnosis programs to address the global burden of sickle cell disease, including Sickle SCAN, HemoTypeSC, Gazelle Hb Variant, and Smart LifeLC. A comprehensive understanding of the molecular pathophysiology of hemoglobin and the globin genes, as well as a clear understanding of the utility and limitations of currently available diagnostic tests, is essential in reducing global disease burden.


Assuntos
Anemia Falciforme , Hemoglobinopatias , Humanos , Hemoglobinopatias/diagnóstico , Hemoglobinopatias/genética , Hemoglobinas/genética , Anemia Falciforme/genética , Focalização Isoelétrica/métodos
6.
Anal Methods ; 15(43): 5885-5890, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37905587

RESUMO

The active ingredients from tobacco extracts were continuously separated and purified using a homemade free-flow electrophoresis apparatus. A rectangular free flow electrophoresis device was constructed for the continuous separation and preparation, and the operating conditions of the device were optimized. The fractions obtained from the free-flowing component collection unit were then detected by HPLC and GC-MS. The results showed that a 90% methanol-water solution could maximize the extraction of the active components from tobacco. Chlorogenic acid and nicotine were enriched in three and four of 24 fractions, respectively, after free-flow isoelectric focusing electrophoresis. 2-Hydroxy-2-cyclopentene-1-one, 1-(2-methyl-1,3-oxathiolan-2-yl) ethanone, nornicotine, cotinine, and scopolamine were separated and enriched synchronously. Overall, the use of free-flow electrophoresis technology for the separation and purification of the active substances in tobacco can improve the comprehensive utilization rate of tobacco.


Assuntos
Cotinina , Eletroforese , Focalização Isoelétrica/métodos , Cromatografia Líquida de Alta Pressão
7.
J Chromatogr A ; 1706: 464247, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37531850

RESUMO

We demonstrated the fractionation of two amino acids, glutamic acid and histidine, separated via isoelectric focusing (IEF) on filter paper folded and stacked in an origami fashion. Channels for electrophoresis were fabricated as circular zones acquired via wax printing onto the filter paper. An ampholyte solution with amphiphilic samples was deposited on all the circle zones, which was followed by folding to form the electrophoresis channels. IEF was achieved by applying an electrical potential between the anodic and cathodic chambers filled with phosphoric acid and sodium hydroxide solutions, respectively. A pH gradient was formed using either a wide-range ampholyte with a pH of 3 to 10 or a narrow-range version with a pH of 5 to 8, which was confirmed by adding pH indicators to each layer. The origami IEF was used to separate the amino acids, glutamic acid and histidine, by mixing with the ampholytes, which were deposited on the layers. The components in each layer were extracted with water and measured by high-performance liquid chromatography using pre-column derivatization with dansyl chloride. The results indicated that the focus for glutamic acid and that for histidine were at different layers, according to their isoelectric points. The origami isoelectric focusing achieved the fractionation of amino acids in less than 3 min using voltage as low as 30 V.


Assuntos
Misturas Anfolíticas , Ácido Glutâmico , Misturas Anfolíticas/química , Proteínas/análise , Histidina , Concentração de Íons de Hidrogênio , Focalização Isoelétrica/métodos , Aminoácidos
8.
J Chromatogr A ; 1704: 464117, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37300912

RESUMO

Paper and thread are widely used as the substrates for fabricating low-cost, disposable, and portable microfluidic analytical devices used in clinical, environmental, and food safety monitoring. Concerning separation methods including chromatography and electrophoresis, these substrates provide unique platforms for developing portable devices. This review focuses on summarizing recent research on the miniaturization of the separation techniques using paper and thread. Preconcentration, purification, desalination, and separation of various analytes are achievable using electrophoresis and chromatography methods integrated with modified or unmodified paper/thread wicking channels. A variety of 2D and 3D designs of paper/thread platforms for zone electrophoresis, capillary electrophoresis, and modified/unmodified chromatography are discussed with emphasis on their limitation and improvements. The current progress in the signal amplification strategies such as isoelectric focusing, isotachophoresis, ion concentration polarization, isoelectric focusing, and stacking methods in paper-based devices are reviewed. Different strategies for chromatographic separations based on paper/thread will be explained. The separation of target species from complex samples and their determination by integration with other analytical methods like spectroscopy and electrochemistry are well-listed. Furthermore, the innovations for plasma and cell separation from blood as an important human biofluid are presented, and the related paper/thread modification methods are explored.


Assuntos
Isotacoforese , Técnicas Analíticas Microfluídicas , Humanos , Microfluídica , Eletroforese Capilar/métodos , Focalização Isoelétrica/métodos , Isotacoforese/métodos , Cromatografia
9.
Molecules ; 28(11)2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37298922

RESUMO

Detection of erythropoietin (Epo) was difficult until a method was developed by the World Anti-Doping Agency (WADA). WADA recommended the Western blot technique using isoelectric focusing (IEF)-PAGE to show that natural Epo and injected erythropoiesis-stimulating agents (ESAs) appear in different pH areas. Next, they used sodium N-lauroylsarcosinate (SAR)-PAGE for better differentiation of pegylated proteins, such as epoetin ß pegol. Although WADA has recommended the use of pre-purification of samples, we developed a simple Western blotting method without pre-purification of samples. Instead of pre-purification, we used deglycosylation of samples before SDS-PAGE. The double detection of glycosylated and deglycosylated Epo bands increases the reliability of the detection of Epo protein. All of the endogenous Epo and exogenous ESAs shift to 22 kDa, except for Peg-bound epoetin ß pegol. All endogenous Epo and exogenous ESAs were detected as 22 kDa deglycosylated Epo by liquid chromatography/mass spectrum (LC/MS) analysis. The most important factor for the detection of Epo is the selection of the antibody against Epo. WADA recommended clone AE7A5, and we used sc-9620. Both antibodies are useful for the detection of Epo protein by Western blotting.


Assuntos
Líquidos Corporais , Eritropoetina , Reprodutibilidade dos Testes , Focalização Isoelétrica/métodos , Western Blotting , Anticorpos , Eletroforese em Gel de Poliacrilamida , Detecção do Abuso de Substâncias/métodos , Proteínas Recombinantes
10.
Electrophoresis ; 44(15-16): 1258-1266, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37138377

RESUMO

Post-translational modifications (PTMs) of adeno-associated virus (AAV) capsid proteins tune and regulate the AAV infective life cycle, which can impact the safety and efficacy of AAV gene therapy products. Many of these PTMs induce changes in protein charge heterogeneity, including deamidation, oxidation, glycation, and glycosylation. To characterize the charge heterogeneity of a protein, imaged capillary isoelectric focusing (icIEF) has become the gold standard method. We have previously reported an icIEF method with native fluorescence detection for denatured AAV capsid protein charge heterogeneity analysis. Although well suited for final products, the method does not have sufficient sensitivity for upstream, low-concentration AAV samples, and lacks the specificity for capsid protein detection in complex samples like cell culture supernatants and cell lysates. In contrast, the combination of icIEF, protein capture, and immunodetection affords significantly higher sensitivity and specificity, addressing the challenges of the icIEF method. By leveraging different primary antibodies, the icIEF immunoassay provides additional selectivity and affords a detailed characterization of individual AAV capsid proteins. In this study, we describe an icIEF immunoassay method for AAV analysis that is 90 times more sensitive than native fluorescence icIEF. This icIEF immunoassay provides AAV stability monitoring, where changes in individual capsid protein charge heterogeneity can be observed in response to heat stress. When applied to different AAV serotypes, this method also provides serotype identity with reproducible quantification of VP protein peak areas and apparent isoelectric point (pI). Overall, the described icIEF immunoassay is a sensitive, reproducible, quantitative, specific, and selective tool that can be used across the AAV biomanufacturing process, especially in upstream process development where complex sample types are often encountered.


Assuntos
Proteínas do Capsídeo , Dependovirus , Dependovirus/metabolismo , Anticorpos Monoclonais/análise , Processamento de Proteína Pós-Traducional , Glicosilação , Focalização Isoelétrica/métodos
11.
Talanta ; 260: 124633, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37172435

RESUMO

Monoclonal antibodies are increasingly used in cancer therapy. To guarantee the quality of these mAbs from compounding to patient administration, characterization methods are required (e.g. identity). In a clinical setting, these methods must be fast and straightforward. For this reason, we investigated the potential of image capillary isoelectric focusing (icIEF) combined with Principal Component Analysis (PCA) and Partial least squares-discriminant analysis (PLS-DA). icIEF profiles obtained from monoclonals antibodies (mAbs) analysis have been pre-processed and the data submitted to principal component analysis (PCA). This pre-processing method has been designed to avoid the impact of concentration and formulation. Analysis of four commercialized mAbs (Infliximab, Nivolumab, Pertuzumab, and Adalimumab) by icIEF-PCA led to the formation of four clusters corresponding to each mAb. Partial least squares-discriminant analysis (PLS-DA) applied to these data allowed us to build models to predict which monoclonal antibody is analyzed. The validation of this model was obtained from k-fold cross-validation and prediction tests. The selectivity and the specificity of the model performance parameters were assessed by the excellent classification obtained. In conclusion, we established that the combination of icIEF and chemometric approaches is a reliable approach for unambiguously identifying compounded therapeutic monoclonal antibodies (mAbs) before patient administration.


Assuntos
Anticorpos Monoclonais , Focalização Isoelétrica Capilar , Humanos , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais/análise , Eletroforese Capilar/métodos , Infliximab/análise , Focalização Isoelétrica/métodos , Controle de Qualidade
12.
Electrophoresis ; 44(7-8): 689-700, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36593722

RESUMO

In modern isoelectric focusing (IEF) systems, where (i) convective mixing is prevented by gels or small cross-sectional area separation channels, (ii) current densities vary spatially due to the presence of electrode vessels with much larger cross-sectional areas than those of the gels or separation channels, and (iii) electrophoretic and diffusive fluxes do not balance each other, stationary, steady-state pH gradients cannot form (open-system IEF). Open-system IEF is currently described as a two-stage process: A rapid IEF process forms the pH gradient from the carrier ampholytes (CAs) in the first stage, then isotachophoretic processes degrade the pH gradient in the second stage as the extreme pI CAs are moved into the electrode vessels where they become diluted. Based on the ratios of the local effective mobilities and the local conductivities ( µ L eff ( x ) $\mu _{\rm{L}}^{{\rm{eff}}}( x )$ / κ ( x ) $\kappa ( x )$ values) of the anolyte, catholyte, and the CAs, we pointed out in the preceding paper (Vigh G, Gas B, Electrophoresis 2023, 44, 675-88) that in open-system IEF, a single process, transient, bidirectional isotachophoresis (tbdITP) operates from the moment current is turned on. In this paper, we demonstrate some of the operational features of the tbdITP model using the new ITP/IEF version of Simul 6.


Assuntos
Misturas Anfolíticas , Isotacoforese , Concentração de Íons de Hidrogênio , Focalização Isoelétrica/métodos , Géis
13.
Anal Chem ; 95(4): 2548-2560, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36656605

RESUMO

Imaged capillary isoelectric focusing (icIEF) and ion-exchange chromatography (IEX) are two essential techniques that are routinely used for charge variant analysis of therapeutic monoclonal antibodies (mAbs) during their development and in quality control. These two techniques that separate mAb charge variants based on different mechanisms and IEX have been developed as front-end separation techniques for online mass spectrometry (MS) detection, which is robust for intact protein identification. Recently, an innovative, coupled icIEF-MS technology has been constructed for protein charge variant analysis in our laboratory. In this study, icIEF-MS developed and strong cation exchange (SCX)-MS were optimized for charge heterogeneity characterization of a diverse of mAbs and their results were compared based on methodological validation. It was found that icIEF-MS outperformed SCX-MS in this study by demonstrating outstanding sensitivity, low carryover effect, accurate protein identification, and higher separation resolution although SCX-MS contributed to higher analysis throughput. Ultimately, integrating our novel icIEF-HRMS analysis with the more common SCX-MS can provide a promising and comprehensive strategy for accelerating the development of complex protein therapeutics.


Assuntos
Anticorpos Monoclonais , Focalização Isoelétrica Capilar , Anticorpos Monoclonais/química , Espectrometria de Massas/métodos , Focalização Isoelétrica/métodos , Cromatografia por Troca Iônica/métodos
14.
Electrophoresis ; 44(7-8): 675-688, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36641504

RESUMO

The carrier ampholytes-based (CA-based) isoelectric focusing (IEF) experiment evolved from Svensson's closed system IEF (constant spatial current density, absence of convective mixing, counter-balancing electrophoretic and diffusive fluxes yielding a steady state pH gradient) to the contemporary open system IEF (absence of convective mixing, large cross-sectional area electrode vessels, lack of counter-balancing electrophoretic- and diffusive fluxes leading to transient pH gradients). Open system IEF currently is described by a two-stage model: In the first stage, a rapid IEF process forms the pH gradient which, in the second stage, is slowly degraded by isotachophoretic processes that move the most acidic and most basic CAs into the electrode vessels. An analysis of the effective mobilities and the effective mobility to conductivity ratios of the anolyte, catholyte, and the CAs indicates that in open system IEF experiments a single process, transient bidirectional isotachophoresis (tbdITP) operates from the moment current is turned on until it is turned off. In tbdITP, the anolyte and catholyte provide the leading ions and the pI 7 CA or the reactive boundary of the counter-migrating H3 O+ and OH- ions serves as the shared terminator. The outcome of the tbdITP process is determined by the ionic mobilities, pKa values, and loaded amounts of all ionic and ionizable components: It is constrained by both the transmitted amount of charge and the migration space available for the leading ions. tbdITP and the resulting pH gradient can never reach steady state with respect to the spatial coordinate of the separation channel.


Assuntos
Isotacoforese , Concentração de Íons de Hidrogênio , Focalização Isoelétrica/métodos , Misturas Anfolíticas , Condutividade Elétrica
15.
Electrophoresis ; 44(7-8): 667-674, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36640145

RESUMO

In 1961, Svensson described isoelectric focusing (IEF), the separation of ampholytic compounds in a stationary, natural pH gradient that was formed by passing current through a sucrose density gradient-stabilized ampholyte mixture in a constant cross-section apparatus, free of mixing. Stable pH gradients were formed as the electrophoretic transport built up a series of isoelectric ampholyte zones-the concentration of which decreased with their distance from the electrodes-and a diffusive flux which balanced the generating electrophoretic flux. When polyacrylamide gel replaced the sucrose density gradient as the stabilizing medium, the spatial and temporal stability of Svensson's pH gradient became lost, igniting a search for the explanation and mitigation of the loss. Over time, through a series of insightful suggestions, the currently held notion emerged that in the modern IEF experiment-where the carrier ampholyte (CA) mixture is placed between the anolyte- and catholyte-containing large-volume electrode vessels (open-system IEF)-a two-stage process operates that comprises a rapid first phase during which a linear pH gradient develops, and a subsequent slow, second stage, during which the pH gradient decays as isotachophoretic processes move the extreme pI CAs into the electrode vessels. Here we trace the development of the two-stage IEF model using quotes from the original publications and point out critical results that the IEF community should have embraced but missed. This manuscript sets the foundation for the companion papers, Parts 2 and 3, in which an alternative model, transient bidirectional isotachophoresis is presented to describe the open-system IEF experiment.


Assuntos
Misturas Anfolíticas , Isotacoforese , Concentração de Íons de Hidrogênio , Focalização Isoelétrica/métodos , Misturas Anfolíticas/química
16.
Drug Test Anal ; 15(2): 163-172, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33450134

RESUMO

Erythropoietin (EPO) is a hormone, which stimulates the production of red blood cells. Due to its performance-enhancing effect, it is prohibited by the World Anti-Doping Agency (WADA). In order to reduce the detection window of EPO doping, athletes have been applying low doses of recombinant EPO (e.g., <10 IU/kg body weight, daily or every second day) instead of larger doses twice or more per week (e.g., 30 IU/kg). Microdoses of Retacrit (epoetin zeta), an EPO biosimilar, were administered intravenously and subcutaneously to human males and females. Urine and serum samples were collected and analysed applying the new biotinylated clone AE7A5 EPO antibody and a further optimized sarcosyl polyacrylamide gel electrophoresis (SAR-PAGE) protocol. With the improved protocol, microdosed Retacrit (7.5 IU/kg body weight [BW]) was detectable for at least 52 h after intravenous administration. Detection windows were approximately the same for serum and urine and doubled after subcutaneous administration (~104 h). Previous studies applying different electrophoretic techniques and the not further optimized SAR-PAGE protocol revealed considerably shorter detection windows for recombinant human erythropoietin (rhEPO) microdoses. Because the new biotinylated antibody performed significantly more sensitive than the nonbiotinylated version, the new protocol will improve the sensitivity and hence detectability of recombinant EPO in doping control.


Assuntos
Doping nos Esportes , Eritropoetina , Masculino , Feminino , Humanos , Focalização Isoelétrica/métodos , Proteínas Recombinantes , Anticorpos , Epoetina alfa , Eletroforese em Gel de Poliacrilamida , Detecção do Abuso de Substâncias/métodos , Peso Corporal
17.
J Pharm Biomed Anal ; 222: 115089, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36279846

RESUMO

This review provides a comprehensive overview of methodological advances and applications of CE in the analysis and characterization of recombinant therapeutic and diagnostic proteins over the past two decades. The first part of the review discusses various aspects of biotechnological protein production and the related effects on the final product. This covers upstream processes, e.g., selection and transfection of host cells, up-scaling of cell cultures and cultivation conditions, as well as downstream processing and a discussion of future trends in biotechnological manufacturing. This part is essential for relating biotechnological production to analytical challenges and requirements in order to provide a holistic insight. In this context, the influence of manufacturing steps on the quality of the final drug substance/product is discussed in terms of related post-translational modifications of the target molecule with a major focus on glycosylation pattern and conformational effects. Particular attention is given to host cell specific and non-human modifications affecting the efficacy and safety of recombinant products. Endowed with this propaedeutic knowledge, the major part of the review discusses the manifold contributions of different CE techniques to the development and optimization of the manufacturing process, to the evaluation and characterization of the final drug product and their role in quality control. Different CE techniques, such as CZE, capillary gel electrophoresis (CGE), (imaged) capillary isoelectric focusing ((i)CIEF), µChipCE, CE-Western blot, affinity CE (ACE), and CE-MS are discussed including a brief introduction in the respective separation and hyphenation principle as well as their applications in the analysis of different recombinant biologics together with recent strategies. The addressed analyte portfolio comprises a vast variety of recombinant proteins with molecular masses from 4.1 kDa up to 20.3 MDa (for recombinant virus-like particles), and a pI range from 2.0 to 11.2. Antibodies are not explicitly covered in the survey. The review is complemented by compiling validation aspects and proposed suitability tests in order to assure the feasibility of methods to industrial and pharmaceutical needs.


Assuntos
Produtos Biológicos , Eletroforese Capilar , Espectrometria de Massas/métodos , Focalização Isoelétrica/métodos , Eletroforese Capilar/métodos , Proteínas Recombinantes
18.
J Sep Sci ; 46(1): e2200679, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36271766

RESUMO

Immunoglobulins in bovine colostrum were separated and fractionated from other proteins using the method and instrumentation developed in our laboratory. The proposed separation was based on bidirectional isotachophoresis/moving boundary electrophoresis with electrofocusing of the analytes in a pH gradient from 3.9 to 10.1. The preparative instrumentation included the trapezoidal non-woven fabric that served as separation space with divergent continuous flow. The defatted and casein precipitate-free colostrum supernatant was loaded directly into the instrument without any additional colostrum pre-preparation. Immunoglobulin G was fractionated from other immune proteins such as bovine serum albumin, ß-lactoglobulin, and α-lactalbumin, and was continuously collected in separated fractions over 3 h. The fractions were further processed, and isolated immunoglobulin G in the liquid fractions was confirmed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and by re-focusing in gel isoelectric focusing. Separated immunoglobulin G was detected in seven fractions by sodium dodecyl sulfate-polyacrylamide gel electrophoresis with a gradually decreased concentration in the fractions. Re-focusing of the proteins in the fractions by gel isoelectric focusing revealed multiple separated zones of immunoglobulin G with the isoelectric point values covering the range from 5.4 to 7.2. Each fraction contained distinct zones with gradually increased isoelectric point values and decreased concentrations from fraction to fraction.


Assuntos
Caseínas , Colostro , Feminino , Gravidez , Humanos , Colostro/química , Dodecilsulfato de Sódio , Focalização Isoelétrica/métodos , Caseínas/análise , Eletroforese em Gel de Poliacrilamida , Imunoglobulina G , Imunoglobulinas
19.
Electrophoresis ; 44(3-4): 378-386, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36200174

RESUMO

Rapid, direct identification and quantitation of protein charge variants, and assessment of critical quality attributes with high sensitivity are important drivers required to accelerate the development of biotherapeutics. We describe the use of an enhanced microfluidic chip-based integrated imaged capillary isoelectric focusing-mass spectrometry (icIEF-MS) technology to assess multiple quality attributes of intact antibodies in a single run. Results demonstrate comprehensive detection of multiple charge variants of an aglycosylated knob-into-hole bispecific antibody. Upfront, on-chip separation by icIEF coupled to MS provides the orthogonal separation required to resolve and identify acidic posttranslational modifications including difficult-to-detect deamidation and glycation events at the intact protein level. In addition, on-chip UV detection enables pI determination and relative quantitation of charge isoforms. Six charge variant peaks were resolved by icIEF, mobilized toward the on-chip electrospray tip and directly identified by in-line icIEF-MS using a connected quadrupole time-of-flight mass spectrometer. In addition to acidic charge variants, basic variants were identified as C-terminal lysine, N-terminal cyclization, proline amidation, and the combination of modifications (not typically identified by other intact methods), including lysine and one or two hexose additions. Nonspecific chain cleavages were also resolved, along with their acidic charge variants, demonstrating highly sensitive and comprehensive intact antibody multi-attribute characterization within a 15-min run time.


Assuntos
Anticorpos Biespecíficos , Anticorpos Monoclonais , Anticorpos Monoclonais/análise , Microfluídica , Focalização Isoelétrica Capilar , Lisina , Eletroforese Capilar/métodos , Espectrometria de Massas/métodos , Focalização Isoelétrica/métodos , Tecnologia
20.
Electrophoresis ; 44(5-6): 540-548, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36148605

RESUMO

Imaged capillary isoelectric focusing (iCIEF) has emerged as an important technique for therapeutic monoclonal antibody (mAb) charge heterogeneity analysis in the biopharmaceutical context, providing imaged detection and quantitation by UV without a mobilization step. Besides quantitation, the characterization of separated charge variants ideally directly by online electrospray ionization-mass spectrometry (ESI-MS) is crucial to ensure product quality, safety, and efficacy. Straightforward direct iCIEF-MS coupling combining high separation efficiency and quantitative results of iCIEF with the characterization power of MS enables deep characterization of mAb charge variants. A short technical setup and optimized methodical parameters (30 nl/min mobilization rate, 2%-4% ampholyte concentration, 0.5-2 mg/ml sample concentration) allow successful mAb charge variant peak assignment from iCIEF to MS. Despite a loss of separation resolution during the transfer, separated intact mAb charge variants, including deamidation as well as major and minor glycoforms even from low abundant charge variants, could be characterized by online ESI-MS with high precision. The presented setup provides a large potential for mAb charge heterogeneity characterization in biopharmaceutical applications.


Assuntos
Anticorpos Monoclonais , Produtos Biológicos , Anticorpos Monoclonais/análise , Espectrometria de Massas por Ionização por Electrospray/métodos , Focalização Isoelétrica/métodos , Focalização Isoelétrica Capilar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...